COMPARISON OF THE SEMEN SWIM-UP AND SOMATIC CELL LYSIS PROCEDURES FOR RAM SPERM RNA EXTRACTION

Main Article Content

Miroslav Bauer
Andrej Baláži
Lucia Olexiková
Jaromír Vašíček
Peter Chrenek

Abstract

Male infertility is an important aspect of animal reproduction, which has a high economic impact on the livestock industry. From rapidly increasing list of different sperm fertility biomarkers, the sperm RNA could serve as a promising diagnostic tool to assess male fertility or could have prognostic value for fertilization and embryo development. The aim of this preliminary study was to compare swim-up and somatic cell lysis buffer (SCLB) procedures for extraction of high-quality ram sperm RNA suitable for downstream molecular biology applications.


A modified TRI REAGENT RT procedure with glycogen and lysis step at 65 °C was carried out in order to extract total RNA. Spectrophotometric measurement of quality and quantity of extracted RNA showed A260/280 ratio 1.8 – 1.9, indicating the absence of contaminants and the amount of RNA 24 ± 3.9 µg (unpurified sperm), 0.9 ± 0.11 µg (swim-up) and 1.5 ± 0.2 µg (SCLB). Sperm RNA quality was further validated by RT-qPCR using primers for WBP2NL and MKRN1 genes. The CD18 and CDH1 markers for leucocytes and endothelial cells, respectively, have been used to check a successfull removal of somatic cells from ram sperm by both procedures. Unlike comparable relative amount of WBP2NL and MKRN1 transcripts among unpurified and swim-up or SCLB purified sperm RNA samples, relative amounts of CD18 and CDH1 transcripts were significantly lower in purified sperm RNA samples (p < 0.001), confirming an effective removal of leucocytes and endothelial cells from sperm by both purification techniques. Further investigations could reveal a potential of sperm RNA as a novel biomarker and promising diagnostic tool to assess ram fertility.

Keywords
  • ram semen
  • swim-up
  • somatic cell lysis buffer
  • total RNA extraction
  • Article Details

    Section
    Articles

    References

    Baláži, A., Vašíček, J., Svoradová, A., Macháč, M., Jurčík, R., Huba, J., Pavlík, I. & Chrenek, P. (2020). Comparison of three different methods for the analysis of ram sperm concentration. Slovak Journal of Animal Science, 53(2), 53−58.

    Bianchi, E., Stermer, A., Boekelheide, K., Sigman, M., Hall, S. J., Reyes, G., Dere, E. & Hwang, K. (2018). High-quality human and rat spermatozoal RNA isolation for functional genomic studies. Andrology, 6, 374−383.

    Boerke, A., Dieleman, S. J. & Gadella, B. M. (2007). A possible role for sperm RNA in early embryo development. Theriogenology, 68, Suppl 1, S147−S155.

    Chen, X., Yue, Y., He, Y., Zhu, H., Hao, H., Zhao, X., Quin, T. & Wang, D. (2014). Identification and characterization of genes differentially expressed in X and Y sperm using suppression subtractive hybridization and cDNA microarray. Molecular Reproduction and Development, 81(10), 908−917.

    Geisinger, A., Wettstein, R. & Benavente, R. (1996). Stage-specific gene expression during rat spermatogenesis: application of the mRNA differential display method. The International Journal of Developmental Biology, 40(1), 385−388.

    Goodrich, R. J., Anton, E. & Krawetz, S. A. (2013). Isolating mRNA and small noncoding RNAs from human sperm. Methods in Molecular Biology, 927, 385−396.

    Hwang, K., Walters, R. C. & Lipshultz, L. I. (2011). Contemporary concepts in the evaluation and management of male infertility. Nature Reviews Urology, 8 (2), 86−94.

    Jodar, M., Selvaraju, S., Sendler, E., Diamond, M. P. & Krawetz, S. A. (2013). The presence, role and clinical use of spermatozoal RNAs. Human Reproduction Update, 19(6), 604−624.

    Kawano, M., Kawaji, H., Grandjean, V., Kiani, J. & Rassoulzadegan, M. (2012). Novel small noncoding RNAs in mouse spermatozoa, zygotes and early embryos. PLoS One, 7, e44542. DOI: 10.1371/journal.pone.0044542.

    Kennedy, Ch. E., Krieger, K. B., Sutovsky, M., Xu, W., Vargovič, P., Didion, B. A., Ellersieck, M. R., Hennessy, M. E., Verstegen, J., Oko, R. & Sutovsky, P. (2014). Protein expression pattern of PAWP in bull spermatozoa is associated with sperm quality and fertility following artificial insemination. Molecular Reproduction and Development, 81(5), 436−449.

    Kim, J. H., Park, S. M., Kang, M. R., Oh, S. Y., Lee, T. H., Muller, M. T. & Chung, I. K. (2005). Ubiquitin ligase MKRN1 modulates telomere length homeostasis through a proteolysis of hTERT. Genes & Development, 19, 776−781.

    Krawetz, S. A. (2005). Paternal contribution: new insights and future challenges. Nature Reviews Genetics, 6(8), 633−642.

    Kulikova, B., Kovac, M., Bauer, M., Tomkova, M., Olexikova, L., Vasicek, J., Balazi, A., Makarevich, A. V. & Chrenek, P. (2019). Survivability of rabbit amniotic fluid-derived mesenchymal stem cells post slow-freezing or vitrification. Acta Histochemica, 121, 491−499.

    Lalancette, C., Platts, A. E., Johnson, G. D., Emery, B. R., Carrell, D. T. & Krawetz, S. A. (2009). Identification of human sperm transcripts as candidate markers of male fertility. Journal of Molecular Medicine, 87(7), 735−748.

    Lambard, S., Galeraud-Denis, I., Martin, G., Levy, R., Chocat, A. & Carreau, S. (2004). Analysis and significance of mRNA in human ejaculated sperm from normozoospermic donors: relationship to sperm motility and capacitation. Molecular Human Reproduction, 10(7), 535−541.

    Liu, T., Cheng, W., Gao, Y., Wang, H. & Liu, Z. (2012). Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities. Molecular Medicine Reports, 6, 535−542.

    Miller, D. (2000). Analysis and significance of messenger RNA in human ejaculated spermatozoa. Molecular Reproduction and Development, 56 (2 Suppl), 259−264.

    Miller, D., Briggs, D., Snowden, H., Hamlington, J., Rollinson, S., Lilford, R. & Krawetz, S. A. (1999). A complex population of RNAs exists in human ejaculate spermatozoa: implications for understanding molecular aspects of spermiogenesis. Gene, 237(2), 385−392.

    Ostermeier, G. C., Miller, D., Huntriss, J. D., Diamond, M. P. & Krawetz, S. A. (2004). Reproductive biology: Delivering spermatozoan RNA to the oocyte. Nature, 429(6988), 154.

    Ostermeier, G. C., Goodrich, R. J., Diamond, M. P., Dix, D. J. & Krawetz, S. A. (2005). Toward using stable spermatozoal RNAs for prognostic assessment of male factor fertility. Fertility and Sterility, 83(6), 1687−1694.

    Pfaffl, M. W. (2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research, 29(9), 2002−2007.

    Platts, A. E., Dix, D. J., Chemes, H. E., Thompson, K. E., Goodrich, R., Rockett, J. C., Rawe, V. Y., Quintana, S., Diamond, M. P., Strader, L. F. & Krawetz, S. A. (2007). Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Human Molecular Genetics, 16(7), 763−773.

    Qian, X., Wang, L., Zheng, B., Shi, Z. M., Ge, X., Jiang, C. F., Qian, Y. C., Li, D. M., Li, W., Liu, X., Yin, Y., Zheng, J. T., Shen, H., Wang, M., Guo, X. J., He, J., Lin, M., Liu, L. Z., Sha, J. H. & Jiang, B. H. (2016). Deficiency of Mkrn2 causes abnormalspermiogenesis and spermiation, and impairs male fertility. Scientific Reports, 6, 39318. https://doi.org/10.1038/.

    Schuster, A., Tang, C., Xie, Y., Ortogero, N., Yuan, S. & Yan, W. (2016). Spermbase: a database for sperm-borne RNA contents. Biology of Reproduction, 95(5), 99, 1−12.

    Sieme, H. & Oldenhof, H. (2015). Sperm cleanup and centrifugation processing for cryopreservation. Methods in Molecular Biology, 1257, 343−352.

    Sutovsky, P., Aarabi, M., Miranda Vizuete, A. & Oko, R. (2015). Negative biomarker based male fertility evaluation:sperm phenotypes associated with molecular – level anomalies. Asian Journal of Andrology, 17, 554−560.

    Vašíček, J. Tvarožková, K., Uhrinčať, M., Mačuhová, L., Hleba, L. & Tančin, V. (2019). Distribution of leucocytes and epithelial cells in sheep milk in relation to somatic cell count and bacterial occurence. A preliminary study. Slovak Journal of Animal Science, 52(4), 160−165.

    Most read articles by the same author(s)