Main Article Content

Ibikunle Funso Olaleru
Ahmed Abu


The nutritive value and potential use of two varieties of sweet potato (Ipomoea batatas) (LAM.) composite meal for growing rabbits was studied by comparing seven diets containing an increasing incorporation rate of Composite Sweet Potato Meal (CSPM) in replacement for maize. The composite sweet potato meal contained 65 % of whole root tubers and 35 % of the leaves and vines. The rabbits were randomly allocated into seven treatments. The two varieties of sweet potato i.e CIP440293 (Orange-Flesh) CSPM and TIS87/0087 (White-Flesh) CSPM replaced maize at graded levels 25, 50, 75 % respectively. The seven treatments are: T1 − 0 % Control, T2 − 25 % Orange Flesh, T3 − 50 % Orange Flesh, T4 − 75 % Orange Flesh, T5 − 25 % White Flesh Sweet potato, T6 − 50 % White Flesh Sweet potato and T7 − 75 % White Flesh Sweet potato. The treatments were performed in four replicates, each in a Completely Randomized Design (CRD) experiment. The diets contained 10.6 − 12.6 % of crude fibre, 16.4 − 17.6 % of crude protein and 10,9275 − 11,6728 of metabolizable energy ad libitum. Eighty-four rabbit does, at twelve rabbits per treatments, were fed the seven diets from weaning (35 days, mean weight: 570.76 ± 42.09 g) to 98 d of age. The faecal digestibility of the diets was measured between 92 and 97 days of age in 6 rabbits per treatment. CSPM can be considered high-fibre roughage, as it contained 42.45 − 54.30 % of NDF (38.30 − 40.35 % of ADF and 13.30 − 20.40 % ADL) and 9.80 − 17.45 % of CP. The crude fibre digestibility was reduced with CSPM incorporation. Dietary incorporation of CSPM impaired the rabbit growth (18.08 vs. 14.66 during the period 77 − 98 days without CSPM). However, feed conversion was undermining with the high incorporation rate in feed. The dressing-out percentage of rabbits fed on diets containing the CSPM were comparable to the dressing-out percentage of rabbit fed the control diet. Health status or main slaughter traits were not affected by CSPM incorporation rate. Thus, CSPM had a comparable nutritive value for growing rabbits and it can successfully serve as a high-fibre feedstuff through its potential to supply low digested fibres (cellulose) and lignin. The two composite sweet potato meals could be considered as a high fibre source with a considerable high crude protein for the growing rabbits. The comparable dietary potential of the composites makes it an excellent replacement for maize, which is the conventional feed stuff, especially for hind gut fermenters like rabbits.

  • Nutritive value
  • Growing rabbit;
  • Composite sweet potato leaf-root meal
  • Growth performance;
  • slaughter traits
  • Article Details



    Abu, A. O., Tewe, O. O., Lösel, D. M., & Onifade, A. A. (2000). Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Bioresource Technology, 72(2), 189−192.

    An, L. V. (2004). Sweet potato leaves for growing pigs: Biomass yield, digestion and nutritive value. PhD thesis submitted to the Department of Animal Nutrition and Management, Saint Louis University, Madrid, Spain.

    Anyaegbunam, H. N., Okoye, B. C., Nwaekpe, J. O., Ejechi, M. E., & Ajuka, P. N. (2016). Technical Efficiency of Small-holder Sweetpotato Farmers in Southeast Agro-ecological Zone of Nigeria. American Journal of Experimental Agriculture, 12(1), 1−7.

    AOAC International. (1990). Official Methods of Analysis of the Association of Official Analytical Chemists, 15th ed. AOAC, Arlington, VA, USA.

    Askov, J. (1997). Reduction of abdominal fat in rabbits with increasing protein content in feed. Proceeding 10th Symposium on Housing and Diseases of Rabbits, fur Bearing Animals and Pet Animals. Celle, Germany.In World Rabbit Science, 5(4), 133. (abstract)

    Blasco, A., Ouhayoun, J. & Masoero, G. (1993). Harmonization of criteria and terminology in rabbit meat research. World Rabbit Science, 1(1), 3−10.

    Beckford, R. C. & Bartlett, J. R. (2015). Inclusion levels of sweet potato root meal in the diet of broilers: Effect on performance, organ weights, and carcass quality. Poultry Science, 94, 1316−1322.

    Chikaodi, E. U., Madziga, I. I. & Iyeghe-Erakpotobor, G. T. (2017).Proximate Composition And Carcass Characteristic of Rabbits Fed Graded Levels of Sweet Potato Vine Supplemented with Methionine and Lysine. Journal of Animal Production Research, (2017), 29(2), 43−62.

    CIP. (2007).

    Collins, W. (1998).

    Dalle Zotte, A., Cullere, M., Sartori, A., Dal Bosco, A., Gerencsér, Zs., Matics, Zs., Kovàcs, M., & Szendrő, Zs. (2014). Effect of Dietary supplementation of Spirulina (Arthrospira platensis) and Thyme (Thymus vulgaris) on carcass composition, meat physical traits, and vitamin B12 content on growing rabbits. World Rabbit Science, 22(1), 11−19.

    Davis, M. P., Freetly, H. C., Kuehn, L. A. & Wells, J. E. (2014). Influence of dry matter intake, dry matter digestibility, and feeding behavior on body weight gain of beef steers 1, 2,3. Journal of Animal Science, 92(7), 3018–3025. DOI: 10.2527/jas.2013-6518

    De Blas, C. & Mateos, G. G. (2010). Feed formulation. In De Blas, C., Wiseman, J. (Eds.), Nutrition of the rabbit, CABI, 222−232.

    De Blas, J. C., Villamide, M. J. & Carabaño, R. (1989). Nutritive value of cereal by-products for rabbits.Wheat straw. Journal of Applied Rabbit Research, 12, 148−151.

    Eiben, Cs., Végi, B., Virág, Gy., Gódor-Surmann, K., Maró A., Odermatt, M., Zsédely, E., Tóth, T., &Schmidt, J. (2010). Effect of different dietary ratios of sunflower and linseed oils on growth and carcass traits of rabbits. Livestock Science, 131, 15−22.

    Fernández-Carmona, J., Blas, E., Pascual, J. J., Maertens, L., Gidenne, T., Xiccato, G., & García, J. (2005). Recommendations and guidelines for applied nutrition experiments in rabbits. World Rabbit Science, 13, 209−228.

    García, J., Carabaño, R., & de Blas, C. (1999). Effect of fiber source on cell wall digestibility and rate of passage in rabbits. Journal of Animal Science, 77, 898−905.

    García, J., Nicodemus, N., Carabaño, R., & de Blas, C. (2002). Effect of inclusion of defatted grape seed meal in the diet on digestion and performance of growing rabbits. Journal of Animal Science, 80, 162−170.

    Gidenne, T. (2015). Dietary fibres in the nutrition of the growing rabbit and recommendations to preserve digestive health: a review. Animal, 9 (2): 227−242.

    Gidenne, T. (1992). Effect of fibre level, particle size and adaptation period on digestibility and rate of passage as measured at the ileum and in the faeces in the adult rabbit. British Journal of Nutrition, 67, 133−146.

    Gidenne, T., Carabaño, R., García, J. & De Blas, C. (2010). Fibre Digestion. In De Blas, C., Wiseman, J. (Eds.), Nutrition of the Rabbit, CABI, 66−82.

    Gidenne, T. & Lebas, F. (2002). Role of dietary fibre in rabbit nutrition and in digestive troubles prevention. 2nd Rabbit Congress of the America, Habana City, Cuba, June 19-22, 2002, 47−59.

    Gidenne, T., Carabano, R., Garcia, J. & De Blas, C. (1998). Fibre digestions. In De Blas, C. & Wiseman, J. (ed.): The nutrition of the Rabbit, p. 69. CABI Publishing, London.

    Gidenne, T., Scalabrini, F., & Marchais, C. (1991). Adaptation digestive du lapin à la teneur en constituents pariétaux du régime. Annales de Zootechnie, 40(2), 73−84.

    Hernández, P. & DalleZotte, A. (2010). Diet and Rabbit Meat Quality. In De Blas, C., Wiseman, J. (Eds.), Nutrition of the Rabbit, CABI, 163−178.

    Kadi, S. A., Djellal, F., & Berchiche, M. (2008). Commercialisation of rabbit's meat in Tizi-Ouzou area, Algeria. In Conference: 9th World Rabbit Congress, June 10−13, 2008, Verona, Italy.

    Laurie, S. M., van Jaarsveld, P. J., Faber, M., Philpott, M. F. & Labuschagne, M. T. (2012). Trans-b-carotene, selected mineral content and potential nutritional contribution of 12 sweet potato varieties. Journal of Food Composition and Analysis, 27(2), 151−159.

    Lebas, F., & Djago, A. Y. (2001). Valorisation alimentaire de la paille par le lapin en croissance. 9ème Journée Recherche Cunicole, Paris, 28−29 novembre, 2001, 77−80.

    Low, J., Lynam, J., Lemaga, B., Crissman, C., Bakr, I., & Thiele, G. (2009). Sweet potato in Sub Saharan Africa. In The Sweetpotato, Springer Netherlands, pp. 359−390.

    Maertens, L. (1992). Rabbit nutrition and feeding: a review of some recent developments. Journal of Applied Rabbit Research, 15, 889−913.

    Maertens, L., Pérez, J. M., Villamide, M., Cervera, C., Gidenne, T. & Xiccato, G. (2002). Nutritive value of raw materials for rabbits: Egran tables 2002. World Rabbit Science, 10, 157−166.

    Mohammed, B., Aminu, N. I., Saleh, K., Ibrahim, R. M. & Nuhu, B. R. (2018). Nutritional Evaluation of Sweet Potato Vines from Twelve Cultivars as Feed for Ruminant Animals. Asian Journal of Animal and Veterinary Advances, 13, 25−29.

    Mwanri, A., Kogi-Makau, W., & Laswai, H. (2011). Nutrients and antinutrients composition of raw, cooked and sun-dried sweet potato leaves. African Journal of Food, Agriculture, Nutrition and Development, 11(5), 5142−5156.

    Nicodemus, N., García, J., Carabaño, R. & de Blas, C. (2002). Effect of the inclusion of sunflower hulls in the diet on performance, disaccharidase activity in the small intestine and caecal traits of growing rabbits. Animal Science, 75(2), 237−243.

    Olaleru, I. F. & Abu, O. A. (2019). Chemical Composition of Two Varieties of Sweet Potato Composite (Ipomoea batatas LAM) Meals. Proceedings of 8th Joint Annual Meeting (JAM) of Animal Science Association of Nigeria (ASAN) and Nigerian Institute of Animal Science (NIAS), September 8–12, 2019, pp. 896−899.

    Oloo, B. O., Shitandi, A., Mahungu, S., Malinga, J. B. & Ogata, B. R. (2014). Effects of Lactic Acid Fermentation on the retention of beta-carotene content in orange fleshed sweet potatoes. International Journal of Food Studies, 3(4), 13−33.

    Orodho, B. A., Alela, B. O., & Wanambacha, J. W. (1996). Use of sweet potato (Ipomoea batatas (L.) lam) vines as starter feed and partial milk replacer for calves. In Ndikumana, J., de Leeuw, P. (Eds.), Proceedings of the Second African Feed Resources Network (AFRNET). Workshop on Sustainable Feed Production and Utilization for Smallholder Livestock Enterprises in Sub-Saharan Africa, Harare, Zimbabwe, 6−10 December 1993. African Feed Resources Network (AFRNET), Nairobi, Kenya. pp. 147−149.

    Papadomichelakis, G., Zoidis, E., & Fegeros, K. (2012). Dietarily induced changes in liver composition and weight of fattening rabbits. Livestock Science, 144, 190−196.

    Robertson, J. B., & Van Soest, P. J. (1981). The detergent system of analysis. In James W. P. T., Theander O. (ed.). The analysis of dietary fibre in food. Marcel Dekker, NY, 123−158.

    Sanoussi, A. F., Dansi, A., Ahissou, H., Adebowale, A., Sanni, L. O., Orobiyi, A., Dansi, M., Azokpota, P. & Sanni, A. (2016). Possibilities of sweet potato [Ipomoea batatas (L.) Lam] value chain upgrading as revealed by physico-chemical composition of ten elites landraces of Benin. African Journal of Biotechnology, 15(13), 481−489.

    Shah, T. R., Prasad, K. & Kumar, P. (2016). Maize − A potential source of human nutrition and health: A review. Cogent Food & Agriculture, 2(1), Article: 1166995. DOI: 10.1080/23311932.2016.1166995

    Schaller, J., Brackhage, C., Gessner, M. O., Baüker, E., & GertDudel, E. (2011). Silicon supply modifies C:N:P stoichiometry and growth of Phragmites australis. Plant Biology (Stuttgart, Germany), 14(2), 392−396.

    SMUI. (2018). Satellite Map of University of Ibadan.

    Sun, H., Mu, T., Xi, L., Zhang, M. & Chen, J. (2014). Sweet potato (Ipomoea batatas L.) leaves as nutritional and functional foods. Food Chemistry, 156, 380−389. DOI: 10.1016/j.FoodChem.2014.01.079

    Teow, C. C., Truong, V., McFeeters, R. F., Thompson, R. L., Pecota, K. V. & Yencho, G. C. (2013). Antioxidant activities, phenolic and b-carotene contents of sweet potato genotypes with varying flesh colours. Food Chemistry, 103, 829−838.

    Tesfaye, T., Engida, T., Aseffa, T., Teshome, A., Asfawu, K., Yohannis, G. & Daniel, M. (2011). Performance of medium and late maturing sweet potato germ plasms in different agroecologies of Ethiopia. In Proceedings of the 14th Annual Conference of the Crop Science Society of Ethiopia, 28−29 April, 2011, Addis Ababa, Ethiopia.

    Tewe, O. O. (2002). Sweet potato utilization in poultry diets. ISHS Acta Horticulture 380: Symposium on Tropical Root Crops in Developing Countries.DOI: 10.17660/ActaHortic.1994.380.66

    Turner, W. J., Malynicz, G. L. & Nad, H. (1976). Effect of feeding rations base on cooked sweet potato and protein supplement to broiler and crossbred poultry. Papua New Guinea Agricultural Journal, 27(3), 69−72.

    United Nations Economic Commission for African UNECA (2015). An Action Plan for African Agricultural Transformation: Feeding Africa. Abdou-diouf International Conference Center Dakar, Senegal 21−23 October 2015.

    Wanapat, M. (2008). Potential uses of local feed resources for ruminants. Tropical Animal Health and Production, 41(7), 1035–1049. DOI: 10.1007/s11250-008-9270-y

    Wang, H., Cao, G. & Prior, R. L. (1997) Oxygen Radical Absorbing Capacity of Anthocyanins. Journal of Agricultural and Food Chemistry, 45, 304−309.

    Woolfe, J. A. (1992): Sweet Potato – Past and Present. In Sweet Potato: An Untapped Food Resource, Cambridge University Press, Cambridge, pp. 15–40.

    Xiccato, G., & Trocino, A. (2010). Energy and Protein Metabolism and Requirements. In De Blas, C., Wiseman, J. (Eds.), Nutrition of the Rabbit, CABI, 83−118.

    Zhang, H. X., Li, H. T., & Li, Y. C. (2015). Analysis on the nutrition composition and antioxidant activity of different types of sweet potato cultivars. Food and Nutrition Sciences, 6, 161−167.